From Wikipedia, the free encyclopedia




















































![{\displaystyle \phi \prime (\epsilon )=2[{\frac {\tan(\psi /2){\frac {1}{2}}\ ({\frac {1+\epsilon }{1-\epsilon }}\ )^{-1/2}({\frac {1-\epsilon -(1+\epsilon )(-1)}{(1-\epsilon )^{2}}}\ )}{1+({\frac {1+\epsilon }{1-\epsilon }}\ )\tan ^{2}(\psi /2)}}\ ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d12001b795a205ef4b27166c6ac5dbb457418fa1)




















I am a wiki mini-janitor. I clean up the messes YOU make.
Trypa <- still awesome
Gugilymugily
Grevlek
DarkSerge
Final Fantasy VI for the ongoing drama.
Something Awful because it sure is something awful har har har.